Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 103, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724724

RESUMO

Identifying the short-lived intermediates and reaction mechanisms of multi-channel radical cation fragmentation processes remains a current and important challenge to understanding and predicting mass spectra. We find that coherent oscillations in the femtosecond time-dependent yields of several product ions following ultrafast strong-field ionization represent spectroscopic signatures that elucidate their mechanism of formation and identify the intermediate(s) they originate from. Experiments on endo-dicyclopentadiene show that vibrational frequencies from various intermediates are mapped onto their resulting products. Aided by ab initio methods, we identify the vibrational modes of both the cleaved and intact molecular ion intermediates. These results confirm stepwise and concerted fragmentation pathways of the dicyclopentadiene ion. This study highlights the power of tracking the femtosecond dynamics of all product ions simultaneously and sheds further light onto one of the fundamental reaction mechanisms in mass spectrometry, the retro-Diels Alder reaction.

2.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573851

RESUMO

Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?

3.
J Phys Chem Lett ; 14(51): 11651-11658, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38109055

RESUMO

Recent two-dimensional electronic spectroscopy experiments [Tilluck et al. J. Phys. Chem. Lett. 2021, 12 (39), 9677-9683] indicate the creation of coherent vibronic wavepackets in the first femtoseconds of hot carrier cooling in hexadecylamine-passivated CdSe quantum dots. Here we present a quantum chemical study of the origin of these coherences in a CdSe nanocrystal. We find that coherent wavepacket motions along vibrational coordinates with alkylamine character promote nonradiative relaxation through conical intersections between the exciton states of the inorganic core. Electronic excitations in the core are found to pass energy to the vibrations of the ligands via two distinct mechanisms: excitation of core phonon modes that are coupled to the ligand vibrations and direct excitation of ligand vibrations by delocalization of the exciton onto the ligands, both of which naturally arise within a photochemical framework based on many-electron potential energy surfaces. If these findings are demonstrated to be general, vibronic coherences may be leveraged to control photophysical outcomes in colloidal quantum dots.

4.
ACS Nano ; 17(22): 22788-22799, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970787

RESUMO

A major challenge in the "bottom-up" solvothermal synthesis of carbon dots (CDs) is the removal of small-molecule byproducts, noncarbonized polyamides, or other impurities that confound the optical properties. In previously reported benzene diamine-based CDs, the observed fluorescence signal already has been shown to arise from free small molecules, not from nanosized carbonized dots. Here we have unambiguously identified the small-molecule species in the synthesis of CDs starting with several isomers of benzene diamine by directly matching their NMR, mass spectrometry, and optical data with commercially available small organic molecules. By combining dialysis and chromatography, we have sufficiently purified the CD reaction mixtures to measure the CD size by TEM and STM, elemental composition, optical absorption and emission, and single-particle blinking dynamics. The results can be rationalized by electronic structure calculations on small model CDs. Our results conclusively show that the purified benzene diamine-based CDs do not emit red fluorescence, so the quest for full-spectrum fluorescence from isomers of a single precursor molecule remains open.

5.
J Phys Chem Lett ; 14(44): 10088-10093, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37917859

RESUMO

We report femtosecond time-resolved measurements of the McLafferty rearrangement following the strong-field tunnel ionization of 2-pentanone, 4-methyl-2-pentanone, and 4,4-dimethyl-2-pentanone. The pump-probe-dependent yields of the McLafferty product ion are fit to a biexponential function with fast (∼100 fs) and slow (∼10 ps) time constants, the latter of which is faster for the latter two compounds. Following nearly instantaneous ionization, the fast time scale is associated with rotation of the molecule to a six-membered cyclic intermediate that facilitates transfer of the γ-hydrogen, while the ∼50-100 times longer time scale is associated with a π-bond rearrangement and bond cleavage between the α- and ß-carbons to produce the enol cation. These experimental measurements are supported by ab initio molecular dynamics trajectories, which further confirm the time scale of this important stepwise reaction in mass spectrometry.

6.
J Phys Chem A ; 127(41): 8633-8638, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37813385

RESUMO

We examine the possibility that three hydrogen atoms in one plane of the cyclopropane dication come together in a concerted "ring-closing" mechanism to form H3+, a crucial cation in interstellar gas-phase chemistry. Ultrafast strong-field ionization followed by disruptive probing measurements indicates that the formation time of H3+ is 249 ± 16 fs. This time scale is not consistent with a concerted mechanism, but rather a process that is preceded by ring opening. Measurements on propene, an isomer of cyclopropane, reveal the H3+ formation time to be 225 ± 13 fs, a time scale similar to the H3+ formation time in cyclopropane. Ab initio molecular dynamics simulations and the fact that both dications share a common potential energy surface support the ring-opening mechanism. The reaction mechanism following double ionization of cyclopropane involves ring opening, then H-migration, and roaming of a neutral H2 molecule, which then abstracts a proton to form H3+. These results further our understanding of complex interstellar chemical reactions and gas-phase reaction dynamics relevant to electron ionization mass spectrometry.

7.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37681695

RESUMO

Salicylideneaniline (SA) is an archetypal system for excited-state intramolecular proton transfer (ESIPT) in non-planar systems. Multiple channels for relaxation involving both the keto and enol forms have been proposed after excitation to S1 with near-UV light. Here, we present transient absorption measurements of hot gas-phase SA, jet-cooled SA, and SA in Ar clusters using cavity-enhanced transient absorption spectroscopy (CE-TAS). Assignment of the spectra is aided by simulated TAS spectra, computed by applying time-dependent complete active space configuration interaction (TD-CASCI) to structures drawn from nonadiabatic molecular dynamics simulations. We find prompt ESIPT in all conditions followed by the rapid generation of the trans keto metastable photochrome state and fluorescent keto state in parallel. Increasing the internal energy increases the photochrome yield and decreases the fluorescent yield and fluorescent state lifetime observed in TAS. In Ar clusters, internal conversion of SA is severely hindered, but the photochrome yield is unchanged. Taken together, these results are consistent with the photochrome being produced via the vibrationally excited keto population after ESIPT.

8.
J Phys Chem Lett ; 13(7): 1825-1832, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35171617

RESUMO

Cyanine molecules are important phototheranostic compounds given their high fluorescence yield in the near-infrared region of the spectrum. We report on the frequency and time-resolved spectroscopy of the S2 state of IR806, which demonstrates enhanced emission upon binding to the hydrophobic pocket of human serum albumin (HSA). From excitation-emission matrix spectra and electronic structure calculations, we identify the emission as one associated with a state having the polymethine chain twisted out of plane by 103°. In addition, we find that this configuration is significantly stabilized as the concentration of HSA increases. Spectroscopic changes associated with the S1 and S2 states of IR806 as a function of HSA concentration, as well as anisotropy measurements, confirm the formation of HSA dimers at concentrations greater than 10 µM. These findings imply that the longer-lived S2 state configuration can lead to more efficient phototherapy agents, and cyanine S2 spectroscopy may be a useful tool to determine the oligomerization state of HSA.


Assuntos
Carbocianinas/química , Albumina Sérica Humana/química , Sítios de Ligação , Carbocianinas/metabolismo , Teoria da Densidade Funcional , Dimerização , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Termodinâmica
9.
J Chem Theory Comput ; 18(2): 795-806, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35073083

RESUMO

Time-dependent electronic structure methods are a valuable tool for simulating spectroscopic experiments. Recent advances in time-dependent configuration interaction (TDCI) algorithms have made them an attractive means of modeling many-electron dynamics, particularly for cases where multireference effects are essential. Here we present an extension to TDCI, Floquet TDCI, where the electronic wave function is expanded in a basis of light-dressed determinants. Our approach is based on our high-performance graphics processing unit (GPU) accelerated implementation of complete active space configuration interaction (CASCI). Simulations of two-photon absorption demonstrate that Floquet TDCI is well-suited for modeling dynamics in intense, ultrashort laser pulses. Accurate results are obtained for pulse energies up to ∼4 × 10-4 J/cm2 per pulse in the most difficult case explored here. By simulation of a set of molecules under continuous wave coupling, we demonstrate the ability of Floquet to describe the entanglement of light and multiple molecules in a cavity (i.e., a cavity polariton). Excellent computational performance is observed: a 320 fs propagation of a large dye (C30N2H22) with a 2 as timestep and a large active space (10 electrons in 11 orbitals), including a monochromatic pulse with three photon states, was performed in 3 h 6 min on a single Tesla V100 GPU. Our Floquet TDCI algorithm scales linearly with the number of photon states and exponentially with the number of photon colors included in the calculation. We argue that its energy-conserving nature makes Floquet TDCI well-suited to drive nonadiabatic molecular dynamics simulations.

10.
J Chem Phys ; 155(21): 214101, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879667

RESUMO

In mixed quantum-classical nonadiabatic molecular dynamics methods, the anchoring of the electronic wave function to a single nuclear geometry results in both quantitative and qualitative errors in the dynamics. In the context of both Ehrenfest and trajectory surface hopping methods, methods for incorporating decoherence are widely used to eliminate these errors. However, the accuracy of these methods often depends strongly on the parameterization of the decoherence time and/or other related quantities. Here, we present a refinement of the recently introduced collapse to a block (TAB) scheme for incorporating decoherence into Ehrenfest dynamics. The proposed approach incorporates an approximation to the history of the population dynamics and treats the coherence decay as Gaussian, rather than exponential. This method uses parameters that can be obtained from first principles, rather than empirical fitting. Application to one-dimensional models indicates excellent agreement with numerically exact simulations. We also introduce a second refinement to the TAB method: a robust linear least-squares algorithm for determining collapse probabilities.

11.
J Phys Chem A ; 125(45): 9770-9784, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747598

RESUMO

We report on the changes in the dual fluorescence of two cyanine dyes IR144 and IR140 as a function of viscosity and probe their internal conversion dynamics from S2 to S1 via their dependence on a femtosecond laser pulse chirp. Steady-state and time-resolved measurements performed in methanol, ethanol, propanol, ethylene glycol, and glycerol solutions are presented. Quantum calculations reveal the presence of three excited states responsible for the experimental observations. Above the first excited state, we find an excited state, which we designate as S1', that relaxes to the S1 minimum, and we find that the S2 state has two stable configurations. Chirp-dependence measurements, aided by numerical simulations, reveal how internal conversion from S2 to S1 depends on solvent viscosity and pulse duration. By combining solvent viscosity, transform-limited pulses, and chirped pulses, we obtain an overall change in the S2/S1 population ratio of a factor of 86 and 55 for IR144 and IR140, respectively. The increase in the S2/S1 ratio is explained by a two-photon transition to a higher excited state. The ability to maximize the population of higher excited states by delaying or bypassing nonradiative relaxation may lead to the increased efficiency of photochemical processes.

12.
J Phys Chem Lett ; 12(39): 9677-9683, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34590846

RESUMO

Surface defects and organic surface-capping ligands affect the photoluminescence properties of semiconductor quantum dots (QDs) by altering the rates of competing nonradiative relaxation processes. In this study, broadband two-dimensional electronic spectroscopy reveals that absorption of light by QDs prepares vibronic excitons, excited states derived from quantum coherent mixing of the core electronic and ligand vibrational states. Rapidly damped coherent wavepacket motions of the ligands are observed during hot-carrier cooling, with vibronic coherence transferred to the photoluminescent state. These findings suggest a many-electron, molecular theory for the electronic structure of QDs, which is supported by calculations of the structures of conical intersections between the exciton potential surfaces of a small ammonia-passivated model CdSe nanoparticle.

13.
J Chem Phys ; 154(9): 090902, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685182

RESUMO

The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree-Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.

14.
J Chem Phys ; 153(11): 114104, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962354

RESUMO

Decoherence corrections increase the accuracy of mixed quantum-classical nonadiabatic molecular dynamics methods, but they typically require explicit knowledge of the potential energy surfaces of all occupied electronic states. This requirement renders them impractical for applications in which large numbers of electronic states are occupied. The authors recently introduced the collapse to a block (TAB) decoherence correction [M. P. Esch and B. G. Levine, J. Chem. Phys. 152, 234105 (2020)], which incorporates a state-pairwise definition of decoherence time to accurately describe dynamics on more than two electronic states. In this work, TAB is extended by introduction of a scheme for efficiently computing a small number of approximate eigenstates of the electronic Hamiltonian, eliminating the need for explicit knowledge of a large number of potential energy surfaces. This adaptation of TAB for dense manifolds of states (TAB-DMS) is systematically improvable by increasing the number of computed approximate eigenstates. Application to a series of one-dimensional model problems demonstrates that TAB-DMS can be accurate when even a very modest number of approximate eigenstates are computed (four in all models tested here). Comparison of TAB simulations to exact quantum dynamical simulations indicates that TAB is quite accurate so long as the decoherence correction is carefully parameterized.

15.
J Chem Theory Comput ; 16(9): 5485-5498, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687710

RESUMO

The ab initio multiple spawning (AIMS) method enables nonadiabatic quantum molecular dynamics simulations in an arbitrary number of dimensions, with potential energy surfaces provided by electronic structure calculations performed on-the-fly. However, the intricacy of the AIMS algorithm complicates software development, deployment on modern shared computer resources, and postsimulation data analysis. PySpawn is a nonadiabatic molecular dynamics software package that addresses these issues. The program is designed to be easily interfaced with electronic structure software, and an interface to the TeraChem software package is described here. PySpawn introduces a task-based reorganization of the AIMS algorithm, allowing fine-grained restart capability and setting the stage for efficient parallelization in a future release. PySpawn includes a user-friendly and interactive Python analysis module that will enable novice users to painlessly adopt AIMS. As a demonstration of PySpawn's simulation capability and analysis module, we report complete active space self-consistent field-based AIMS simulations of the 1,2-dithienyl-1,2-dicyanoethene molecule, a promising molecular photoswitch.

16.
J Chem Phys ; 152(23): 234105, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571062

RESUMO

Independent trajectory (IT) nonadiabatic molecular dynamics simulation methods are powerful tools for modeling processes involving transitions between electronic states. Incorporation and refinement of decoherence corrections into popular IT methods, e.g., Ehrenfest dynamics and trajectory surface hopping, is an important means of improving their accuracies. In this work, we identify a new challenge in the development of such decoherence corrections; when a system exists in a coherent superposition of three or more electronic states, coherences may decay unphysically when the decoherence correction is based on decoherence times assigned on a state-wise basis. As a solution, we introduce decoherence corrected Ehrenfest schemes based on decoherence times assigned on a state-pairwise basis. By application of these methods to a set of very simple one-dimensional model problems, we show that one of these state-pairwise methods ("collapse to a block") correctly describes the loss of coherence between all pairs of states in our multistate model problems, whereas a method based on a state-wise description of coherence loss does not. The new one-dimensional models introduced here can serve as useful tests for other decoherence correction schemes.

17.
Inorg Chem ; 58(17): 11699-11715, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31403782

RESUMO

To examine structural and electronic differences between iron and ruthenium imido complexes, a series of compounds was prepared with different phosphine basal sets. The starting material for the ruthenium complexes was Ru(NAr/Ar*)(PMe3)3 (Ru1/Ru1*), where Ar = 2,6-(iPr)2C6H3 and Ar* = 2,4,6-(iPr)3C6H2, which were prepared from cis-RuCl2(PMe3)4 and 2 equiv of LiNHAr/Ar*. The starting materials for the iron complexes were the analogous Fe(NAr/Ar*)(PMe3)3 species (Fe1/Fe1*), which were not isolated but could be generated in situ from FeCl2, PMe3, and LiNHAr/Ar*. With both iron and ruthenium, the PMe3 starting materials underwent phosphine replacement with chelating ligands to give new group 8 imido complexes in the +2 oxidation state. Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to M1/M1* gave Ru(NAr/Ar*)(PMe3)(dppe) and Fe(NAr/Ar*)(PMe3)(dppe). Addition of 1,2-bis(dimethylphosphino)ethane (dmpe) provided Ru(NAr/Ar*)(dmpe)2. A triphos ligand, {P(Me)2CH2}3SitBu (tP3), was also examined. Addition of tP3 to Fe1 provided Fe(NAr)(tP3) (Fe4), but a similar reaction with Ru1 only gave intractable materials. Oxidation of Fe4 with AgSbF6 gave {Fe(NAr)(tP3)}+SbF6- (Fe4a). Oxidation of Ru2 with AgSbF6 gave the unstable cation {Ru(NAr)(PMe3)(dppe)}+, which dimerized in the presence of acetonitrile via C-C bond formation at the aryl group C4 positions, affording {Ru(NAr)(PMe3)(NCMe)(dppe)}2+. This suggested that there was substantial radical character in the imide π system on oxidation and that an aromatic group substituted at the 4-position might provide greater stability. The cations {Fe(NAr*)(PMe3)(dppe)}+ (Fe2a*), {Ru(NAr*)(PMe3)(dppe)}+ (Ru2a*), and Fe4a were examined by EPR spectroscopy, which suggested differences in electronic structure depending on the metal and ligand set. CASPT2 calculations on model systems for Ru2a* and Fe2a* suggested that the large differences in electronic structure are related to the energy gap between the π-antibonding HOMO and the π-bonding HOMO-1. Both the geometry of the phosphines, which is slightly different between the iron and ruthenium analogs, and the metal center seem to contribute to this energetic difference.

18.
J Phys Chem Lett ; 10(16): 4542-4548, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31342748

RESUMO

Most nonadiabatic molecular dynamics methods require the determination of a basis of adiabatic or diabatic electronic states at every time step, but in dense manifolds of electronic states, such approaches become intractable. A notable exception is Ehrenfest molecular dynamics, which can be implemented without explicit determination of such a basis but suffers from unphysical behavior when propagation on a mean-field potential energy surface (PES) does not accurately reflect the true dynamics on multiple electronic states. Here we introduce the multiple cloning for dense manifolds of states (MCDMS) method, a systematically improvable approximation to the multiple cloning method. MCDMS avoids both the mean-field PES problem and the need to compute the full electronic spectrum. This is achieved by reformulating multiple cloning to use a subspace of approximate eigenstates constructed from the time-dependent Ehrenfest electronic wave function. By application to model systems, we show that this approach allows a substantial reduction in the size of the required electronic basis without significant loss in accuracy.

19.
Phys Chem Chem Phys ; 21(21): 10870-10878, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106323

RESUMO

A predictive theory connecting atomic structure to the rate of recombination would enable the rational design of semiconductor nanomaterials for optoelectronic applications. Recently our group has demonstrated that the theoretical study of conical intersections can serve this purpose. Here we review recent work in this area, focusing on the thesis that low-energy conical intersections in nanomaterials share a common feature: locality. We define a conical intersection as local if (a) the intersecting states differ by the excitation of an electron between spatially local orbitals, and (b) the intersection is accessed when the energies of these orbitals are tuned by local distortions of the geometry. After illustrating the locality of the conical intersection responsible for recombination at dangling bond defects in silicon, we demonstrate the locality of low-energy conical intersections in cases where locality may be a surprise. First, we demonstrate the locality of low-energy self-trapped conical intersections in a pristine silicon nanocrystal, which has no defects that one would expect to serve as the center of a local intersection. Second, we demonstrate that the lowest energy intersection in a silicon system with two neighboring dangling bond defects localizes to a single defect site. We discuss the profound implications of locality for predicting the rate of recombination and suggest that the locality of intersections could be exploited in the experimental study of recombination, where spectroscopic studies of molecular models of defects could provide new insights.

20.
J Phys Chem A ; 123(13): 2661-2673, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30843698

RESUMO

The utility of optoelectronic materials can be greatly reduced by the presence of efficient pathways for nonradiative recombination (NRR). Lead halide perovskites have garnered much attention in recent years as materials for solar energy conversion, because they readily absorb visible light, are easy to synthesize, and have a low propensity for NRR. Here we report a theoretical study of the pathways for NRR in an archetypal lead halide perovskite: CsPbBr3. Specifically, we identified a set of conical intersection (CIs) in both a molecule-sized cluster model (Cs4PbBr6) and nanoparticle model (Cs12Pb4Br20) of the CsPbBr3 surface. The energies of the minimal energy CIs, corrected for both dynamical electron correlation and spin-orbit coupling, are well above the bulk band gap of CsPbBr3, suggesting that these intersections do not provide efficient pathways for NRR in this material. Analysis of the electronic structure at these intersections suggests that the ionic nature of the bonds in CsPbBr3 may play a role in the high energy of these CIs. The lowest-energy intersections all involve charge transfer over long distances, whether it be across a dissociated bond or between neighboring unit cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...